- 研究の背景
光を用いた冷却は、原子気体だけでなく固体でも研究されています。固体レーザー冷却では、入射光よりも高いエネルギーの光を放出する過程(アンチストークス発光)を利用します(図1)。高効率にアンチストークス発光が生じれば、光を当てるほど物質はエネルギーを失い、冷却されることになります。
固体におけるアンチストークス光学冷却は、希土類イオンを添加した結晶やイオンにおいて既に実現されています。近年活発な研究が行われており、90 K(=-183 ℃)程度への冷却が報告されています。しかしながら、希土類系では原理的な冷却限界が存在しており、半導体を用いたアンチストークス光学冷却が期待されています。半導体では理論的には10 K(=-263 ℃)程度までの冷却が可能とされているほか、既存の半導体光・電子デバイス作製技術を活用してユニークな冷却デバイスの開発も期待できます。
アンチストークス光学冷却には、ほぼ100%の発光量子効率(注3)、および大きな電子-フォノン相互作用(注4)が必要です。本研究ではこの条件を満たす半導体としてハロゲン化金属ペロブスカイト(注5)に注目しました。特に、ハロゲン化金属ペロブスカイトの一種であるCsPbBr3がCs4PbBr6結晶中に分散された構造(CsPbBr3/Cs4PbBr6)が有望であると考えました(図2)。CsPbBr3/Cs4PbBr6は97%以上という極めて高い発光効率が報告されているほか、周囲を安定な構造に囲まれているために、大気暴露や光励起で劣化しやすいというハロゲン化金属ペロブスカイトの弱点を克服できます。これにより光学冷却の実験的検証や実際のデバイス開発が容易になると期待されます。
- 研究成果
さらに低温でも測定を行い、70 K(=-203 ℃)という低温でもアンチストークス発光の観測に成功しました(図4)。この温度は、希土類系での光学冷却における最低到達温度の90 Kより低く、発光効率さえ十分に高ければ、これまでより低温への光学冷却が実現する可能性があります。
研究チームでは、電子-フォノン相互作用の強さを定量的に調べることで、高効率なアンチストークス発光をもたらすメカニズムについても議論しました。アンチストークス発光には大きな電子-フォノン相互作用が必要ですが、電子-フォノン相互作用が大きすぎると、電子は結晶格子を大きく歪めることでエネルギーを失い、アンチストークス発光が起きにくくなってしまいます。CsPbBr3/Cs4PbBr6は電子-フォノン相互作用の大きさが絶妙であり、光学冷却に有望な材料系であることを示しました。
- 今後の展開
半導体光学冷却が実現できれば、冷媒やコンプレッサーを使わない「無振動無冷媒」冷却が実現できるほか、熱を光に変換して輸送するような新しいエネルギー利用も期待できます。今後は、実際に半導体光学冷却の実現に挑むとともに、ユニークな応用の可能性も探っていきたいと考えています。
本研究は戦略的創造研究推進事業(科学技術振興機構; JPMJCR16N3)、科学研究費補助金(日本学術振興会; JP19K03683, JP19H05465)、キヤノン財団、千葉ヨウ素資源イノベーションセンターの支援で行われました。- 用語解説
半導体に一定以上の高いエネルギーをもつ光を入射すると、半導体中の電子は光を吸収して高いエネルギーの状態をとり、それが元に戻るときに光を放出し、これを発光と呼ぶ。入力光のエネルギーよりも高いエネルギーの発光をアンチストークス発光と呼ぶ。
(注2)光学冷却
アンチストークス発光を使って物質を冷やす冷却手法。1929年にPringsheimによって提唱されたものの、長らく実現されていなかったが、近年希土類イオンを結晶やガラスに分散させた材料で光学冷却は実現されている。一方、半導体光学冷却についての報告はあるものの、その成否については多くの議論がなされている。
(注3)発光量子効率
入射した光子数に対して発光として物質から外部に取り出された光子数の割合。
(注4)電子-フォノン相互作用
電子-格子相互作用ともいう。結晶を構成する格子(イオン/原子)と電子の相互作用。フォノンとは、結晶格子の熱振動。
(注5)ハロゲン化金属ペロブスカイト
近年注目を集める新規半導体材料。太陽電池や発光デバイス材料として研究されているほか、基礎物理の研究においてもそのユニークな性質から注目されている。ペロブスカイトは結晶構造の名前であり、様々なペロブスカイト構造の物質が存在する。
- 論文掲載情報
著者情報:Yuto Kajino, Shuji Otake, Takumi Yamada, Kazunobu Kojima, Tomoya Nakamura, Atsushi, Wakamiya, Yoshihiko Kanemitsu, and Yasuhiro Yamada*(*責任著者)
掲載誌:Physical Review Materials
2022 年 4 月 14 日公開
DOI: https://doi.org/10.1103/PhysRevMaterials.6.L043001
"輸送" - Google ニュース
April 20, 2022 at 12:00PM
https://ift.tt/m2C3eO7
新たな冷却方法やエネルギー輸送の実現に期待 - PR TIMES
"輸送" - Google ニュース
https://ift.tt/4Nvta8U
Shoes Man Tutorial
Pos News Update
Meme Update
Korean Entertainment News
Japan News Update
No comments:
Post a Comment